
The NX iPhone 2D Gaming Framework

Eduardo Coelho
George Ruberti Piva

Nexia Mobile Solutions

Paulo Ćesar Rodacki Gomes
Dalton Solano dos Reis

Universidade Regional de Blumenau (FURB)

Abstract

The recent release of Apple’s iPhone SDK opened new possibili-
ties for mobile game development. Currently available commercial
and open-source game engines still lack support for some specific
iPhone features such as NIB files, UIKit and Bonjour. This paper
presents NX 2D Gaming Framework, a framework for rapid 2D
game development with better integration to such specific iPhone
technologies. With NX 2D Gaming Framework, developers might
integrate OpenGL and UIKit interfaces in single-player and multi-
player iPhone games over Wi-Fi networks using Zero Configuration
Networking Standard and multi-touch interface.

Keywords:: iPhone, Mobile Game Engine, Zero-configuration

Author’s Contact:

{eduardo,piva}@nexiamobile.com
{rodacki,dalton}@inf.furb.br

1 Introduction

The recent release of Apple’s iPhone SDK opened new possibili-
ties for mobile game development. iPhone has some unique fea-
tures among existing mobile platforms such as its programming
language, development environment, device’s hardware resources,
operating system and even the business model for application dis-
tribution.

This paper presents NX 2D Gaming Framework, a lightweight
and compact 2D game development framework based on Apple’s
iPhone SDK. It’s main purpose is provide developers a set of tools
for rapid development of small-scale 2D game projects.

The main differences among this framework and other available
engines lies in its integration with features that are exclusive to
iPhone. The NX 2D Gaming Framework allows simultaneous uti-
lization of OpenGL ES and Apple’s UIKit framework. Also, it pro-
vides support for NIB files1 and specifies a communication proto-
col for multi-player games over Wi-Fi networks based on Apple’s
Bonjour technology. In the following sections the NX 2D Gaming
Framework will be referred simply as NX Framework.

Beyond this introduction, this paper is divided into 5 more sections.
In section 2 some related work are presented. Section 3 shows the
iPhone OS technologies, including hardware issues and operating
system. Section 4 details the NX Framework architecture and its
underlying technologies. For a more concrete examination and val-
idation of results, the section 5 shows two game projects based on
NX Framework. Finally, some results and future work are cited in
section 6.

2 Related Work

Some related works which also aims to make the game development
for the iPhone platform easier were identified, these include the
open-source frameworks SIO2 [SIO2 2009], Cocos2D-iPhone [co-
cos2d 2009] and Oolong [Engel 2009], the commercial game
engines Unity [Unity Technologies 2009], iTGB [GarageGames
2009] and Ston3D [Stonetrip 2009]. Few academic projects focus-
ing in Apple’s iPhone SDK have been published until the present

1A NIB file describes applications user interfaces that were previously
constructed in the Apple’s Interface Builder WYSIWYG editor and are
based on Apple’s UIKit framework.

date. Comparing to NX 2D Gaming Framework the cited game en-
gines still have characteristics that are too much adherent to game
development for desktop platforms.

Most of these engines provide support for iPhone specific features
such as accelerometers and multi-touch screen, however they all
lack support for specific technologies such as Apple’s Interface
Builder files, iPhone’s UIKit framework and Bonjour (Apple’s im-
plementation of Zero Configuration Networking Standard). The use
of those technologies brings some advantages such as better inte-
gration with the device’s operating system services and user inter-
face system, faster code development and less probability of error
occurrence.

3 iPhone OS Technologies

The iPhone 3G is a smartphone powered by an ARM 620 Mhz pro-
cessor with 128 MB RAM memory, 8 and 16 GB flash drive. The
recent released iPhone 3G S upgrades to 16 and 32 Gb flash drive.
Moreover, this device comes with proximity and ambient light sen-
sor, multi-touch 320×480 screen, 3-axis accelerometer and magne-
tometer.

The iPhone OS, which is the iPhone operating system, is based on
a variant of the same Darwin operating system core that is found
in Mac OS X [Allen and Appelcline 2008]. Regarding the soft-
ware development for this platform, Apple has released the iPhone
SDK on June 2008, which includes an Objective-C compiler and
IDE (Xcode), iPhone simulator, and a suite of additional tools for
developing iPhone and iPod applications [Dalrymple and Knaster
2008].

The iPhone SDK provides a rich set of APIs that are usefull for
game development, including multi-touch event and accelerometer
support, 2D and 3D rendering with OpenGL ES 2.0, audio play-
ing back; network communication infrastructure, data persistence,
views and windows abstractions, hardware assisted animation sup-
port and so forth. The frameworks av ailable for developers are
found in the iPhone OS [Apple Computer 2009a], which can be
viewed as a set of abstraction layers, as depicted in figure 1.

Cocoa Touch
Media

Core OS
Core Services

Figure 1: iPhone OS layers

At the lower layers of the system are the fundamental services on
which all applications rely, while higher-level layers contain more
sophisticated services and technologies. Higher-level layers pro-
vide object-oriented abstractions for lower-level constructs, but not
necessarily mask the technologies contained in the lower layers.

The Cocoa Touch Layer comprises the UIKit and Foundation
frameworks, which provide the basic tools and infrastructure nec-
essary to implement graphical, event-driven applications in iPhone
OS. The Media layer provides the key technologies to 2D and 3D
drawing and audio playbing back. The most notable frameworks
present on this layer are: OpenGL ES, QuartzCore, Core-Graphics,
AudioToolbox, OpenAL and Media Player. The Core Services
layer provides the fundamental system services that are used by
all applications, such as collection data types, String date and time.
Finally, the Core OS layer encompasses the kernel environment,
drivers, and basic interfaces of the operating system.



4 The NX iPhone 2D Gaming Framework

The iPhone hardware capabilities and the rich set of APIs provided
by the iPhone SDK are keen on for gaming development. The NX
Framework appears as an abstraction for those technologies, which
makes the game development for this platform easier. By using the
framework, the developer is able to take advantage of its abstraction
while being able to access lower levels of iPhone OS’ APIs as well.

The NX Framework is written in the Objective-C programming lan-
guage and so was modeled under the object-oriented programming
paradigm. The Objective-C language is quite interesting because it
has a memory management system (garbage collection). Further-
more, it is compatible with C and C++ programming languages,
giving to the developer a lot of flexibility concerning the technolo-
gies to be used. This language also allows better integration with
the iPhone OS API than C or C++.

The NX Framework’s architecture is presented in figure 2. It com-
prises the Engine and the Network modules. The former contains
classes and protocols common to 2D game development while the
latter specificaly emcompasses the network infrastructure of the
framework. This architecture’s proposal offers a compact set of ab-
stractations of the Apple’s frameworks (present in the lowest-level
layer) that allows the quickly development of new games, by just
adopting the NX Framework protocols.

NX iPhone 2D Gaming Framework
User Game

Engine Network

Apple iPhone SDK

O
pe

nG
LE

S

UI
Ki

t

Q
ua

rtz
Co

re

Fo
un

da
tio

n

Co
re

G
ra

ph
ics

Au
di

oT
oo

lb
ox

Figure 2: NX Framework architecture

4.1 Engine module

TheEngine module is the game engine properly speaking, it is re-
sponsible for controlling the global functionality of a 2D game and
provides classes for the game instantiation, user multi-touch event
handling and game screen management. Figure 3 shows the class
structure for the Engine module.

Engine

UIViewNXController <<abstract>>
NXView

<<protocol>>
NXGame NXGameController

<<abstract>>
NXSprite Texture2D <<struct>>

GameType

Figure 3: Engine module class structure

TheNXController is the module’s main class, it controls the game
displaying on iPhone screen and maps the events that arises in the
visualization layers to the game implementation. It also makes the
transitions between classes that inherit from NXView, mananging
their allocated memory. Moreover, theNXController class has op-
erations that allows the presentation of game screens that can be
loaded from a NIB file. Only one object of this class is instantiated
and its life cycle corresponds to the whole application life cycle.
Since this object has a reference to a NXNetwork class instance, it
can provide to the other game classes the network communication
infrastructure, if needed. At last, theNXController class has data
persistence mechanisms, which allow game state persistence that
would be recovered in a future execution.

The abstract classNXView represents a game view that can be dis-
played on the iPhone screen. It inherits all functionalities from
UIView class (UIKit framework) and has, in addition, a reference
to a NXController object. As a result, all its descendent classes are
able to use their reference to the NXController object to request a
transition between NXViews, which occurs, for instance, when the
screen is changed from the game screen to the options menu screen.
Interface files constructed in Apple’s Interface Builder (NIB files)
typically describes GUI screens. They can be loaded and rendered
with the creation of NXViews sub-classes which are the NIB’s “file
owners”.

NXGame is a protocol2 that defines the operations that must be
implemented by a 2D game. These operations comprise memory
management issues and, mainly, the gameloop. This protocol also
garantees that classes that adopt it have a reference to a NXGame-
Controller object, in this way, these classes are able to suspend or
pause the gameloop.

The NXGameController is a NXView specialization for a
CAEAGLLayer layer that creates an OpenGL ES context. In other
words, it is a view that displays OpenGL ES content on the iPhone
screen. Its main function is to instantiate the game and manage the
gameloop by using control and state attributes. The actual game
to be controlled is an instance of a class that adopts the NXGame
protocol. Since this class specification is generic, its constructor
requires aGameType data structure in order to know what kind
of game to instantiate. TheGameType data structure holds the
game’s class and whether or not it requires network communica-
tion. Finally, the abstract classNXSprite defines the minimal char-
acteristics for a 2D game object, and so aggregates a Texture2D ob-
ject, which is responsible for text and texture drawing. In addition,
the NXSprite class holds the basic attributes that represents a 2D
game entity. The simulation and rendering operations are defined
as abstract and can be overwritten if needed.

4.2 Network module

This module provides a basic structure to create multiplayer
games using client-server networking communication. It was
developed using iPhone SDK classesNSNetService and
NSNetServiceBrowser which adopt the zero-configurantion
standard. Also, this module defines a specific communication pro-
tocol for game data exchange.

4.2.1 Zero-Configuration

Zero-configuration or Zeroconf is a network communication archi-
tecture. It’s an IETF standard to manage TCP/IP networks without
needed of manually configuration or a network administrator. Its
goal is to let users connect their computers or devices in a local
network – by Ethernet or Wireless connection – and gain access to
use all available local network services. To achieve the current Ze-
roconf pattern, the operational system or device have to implement
three functionalities:i) be capable to self-assign an IP address with-
out a DHCP server (addressing);ii) Translate names to IP addresses
without a DNS server (naming) andiii) discover available local net-
work services (service discovery). Promoted by Apple Computer
Inc., it is available as the Bonjour implementation [Voip-Info 2009].

4.2.2 Bonjour

Bonjour implements Zeroconf’s functionalities of addressing, nam-
ing and service discovery. To addressing, the Bonjour’s proposed
solution is the auto-assign of IP addresses into a LAN or a net-
work segment. The naming process is similar to the addressing one
– each service or device auto-assigns a name and tests if it is al-
ready in use. Finally, the service discovery lets applications search
into local network for a particular service type’s instances and keep
on a list of services names (which are persistent rather than non-
persistent addresses), allowing a service name to be resolved in an

2A protocol, in Objective-C, is a list of method declarations that any
class and perhaps many classes, might implement. A protocol is simply a
list of method declarations, unattached to a class definition.



address and a port number always that is needed [Apple Computer
2009b].

Differing from the traditional devices oriented approach, Bon-
jour is service oriented. This makes requests to all devices
about “what services they provide” unnecessary, just request-
ing about “which device provides determined service”. To
set a service instance name, Bonjour uses the convention:
“ServiceName. ServiceType. TransportProtocol-
Name.Domain ”. A valid example could be “I-601’s
iPhone. airhockeygame. tcp.local. ”, which rep-
resents anairhockeygame service type available byTCP
connection in thelocal. domain, where theServiceName
is a human readable descriptive name. Each element is separated
by the “ ” character. Bonjour services architecture supports three
basic operations: service publication, discovery and resolving.

4.2.3 Protocols

This network module of NX Framework is composed by classes
presented in figure 4 and the communication protocols described
below:

• NXServerDelegate: this protocol defines the opera-
tions serverDidEnableBonjour:withName: ,
server:didNotEnableBonjour: and
didAcceptConnectionForServer:inputStream:
outputStream: which must be implemented in a delegate
class to manage a server creation and a Bonjour service
publication. These operations are invoked if a Bonjour
service was published, was not published or when it receives
a connection, respectively;

• NXClientDelegate: defines the operations
netService:DidResolveAddress: and
netService:DidNotResolve: which must be
implemented in a delegate class to manage a Bonjour service
resolution. These operations are invoked when a Bonjour
service was or was not resolved, respectively;

• NXNetworkController: defines the operation
setupNXNetwork: which must be implemented in a
class that has to control the NXNetwork object. Through
this operation, the controlled object must be initialized and
informed that a class which adopt this protocol is its current
controller;

• NXNetworkServerController: is a NXNetwork-
Controller’s specialization, defining the operations
serviceDidCreate: , serviceDidNotCreate:
and serviceDidAcceptConnection: which must
be implemented to control the Bonjour service publication
process. These described operations are invoked by the
controlled object, respectively, when a Bonjour service was
or wasn’t published or when a connection to a published
service was established, allowing the decision making for the
class that adopt this protocol;

• NXNetworkClientController: is a NXNetwork-
Controller’s specialization, defining the operations
serviceDidResolve: , serviceDidNotResolve: ,
didConnectToService: and
didNotConnectToService: , which must be im-
plemented to control the Bonjour service resolution and
connection processes. These operations are invoked by the
controlled object, respectively, when a Bonjour service was
resolved as well as when a connection to a Bonjour service
previously resolved was established;

• NXStreamEventHandler: define the operation
stream:handleEvent: that controls the stream of
bytes through the input and output streams available in a
NXNetwork instance. These streams are created after a
connection to some Bonjour service’s server.

<<protocol>>
NXStreamEvent

Handler

NXNetwork

<<protocol>>
NXNetworkClient

Controller

<<protocol>>
NXNetworkServer

Controller

Network
<<protocol>>

NXClientDelegate
<<protocol>>

NXServerDelegate

TCPServer

<<protocol>>
NXNetworkController

Figure 4: Compact Network module’s class diagram

4.2.4 The NXNetwork class

Having commonly only one instance in an application, this class
adopts theNXServerDelegate and NXClientDelegate
protocols, allowing itself to publish, discover or resolve a
Bonjour service. Once defined the domain, the service type
and the transport protocol, it becomes possible to execute the
three basic Bonjour operations (service publication, discovery
and resolution) through the operationspublishService: and
browseAndResolveService: . The operations are performed
as described bellow:

• publication: instantiates a TCPServer class object – responsi-
ble to create a TCP server – and publics the Bonjour service by
thepublish: operation from thenetService attribute;

• service discovery: uses an instance of
NSNetServiceBrowser – responsible to return all
Bonjour services of a selected type – to update the
netService attribute with the desired service;

• resolution: calls theresolveWithTimeout: operation
from thenetService attribute.

During the execution of the above operations, the reported
events are notified to theactiveNetworkController
attribute – a reference to an object that adopts the
NXNetworkController protocol – which should be informed
through the setActiveNetworkController: opera-
tion. After a connection through theconnectToService:
is established, this class is responsible for opening the input
and output streams – instances ofNSInputStream and
NSOutputStream – and resend these streams’ reported
events to the activeStreamEventHandler attribute.
This attribute keeps a reference to an object that adopts the
NXStreamEventHandler protocol, which should be informed
through thesetActiveStreamEventHandler: operation
to transmit bytes over a network. Lastly, thestop: operation
finishes the current active service.

5 Samples

At the moment two game projects were developed using the NX
Framework. The first one, Zig Zig Zaa [Coelho et al. 2009] is
an application that was designed for educational purpose and con-
tains two embedded games. It is already published on Apple’s App
Store. The second one is an AirHockey game (named here as NX-
AirHockey), which will be introduced here as a study case.

In the NXAirHockey game, matches can played by two players si-
multaneously in the same device (by using the multi-touch capa-
bilities) or even on different devices (by using the NXNetwork in-
frastructure). A single player game mode is also supported, in this
case, the player plays against the computer that is controlled by the
artificial intelligence module that was implemented. The game ar-
chitecture comprises two modules: Model and Game. The Model
module aggregates the game domain entities, which are subclasses
of NXSprite. The Game module actually do the game implemen-
tation by making the interaction among the entities defined in the
Model module. It also encompasses the game menus and connec-
tion screens, along with the gameplay screen itself. The class dia-
gram shown in figure 5 depicts the classes responsible by the game-



play implementation. TheNXController class has the function
of present to the user the game graphical content on the iPhone’s
screen. In this case, this class aggregates aNXGameController
object, which is a specialization of aNXView for a CAEAGLLayer
layer. This is due the fact the game rendering is done by OpenGL
ES.

NXAirHockey

NXGame
Game

NXAirHockeyLocal NXAirHockeyRemote NXStreamEvent
Handler

NXAirHockeyRemote
Server

NXAirHockeyRemote
Client

NXGameController

NXController

Figure 5: NXAirHockey Game module (gameplay)

The NXAirHockey class serves as the basis for the other game
implementation classes. It adopts theNXGameprotocol and there-
fore implements the gameloop and event handling operations. By
doing this, it is capable to manage the game rules. Some special-
izations of this class were made in order to distinguish instances of
games that occur locally or remotely.

The classNXAirHockeyLocal comprises the implementation
of a game that occurs locally, either in single player or mul-
tiplayer mode. Regarding the implementation of a remotely
game, after established a client-server connection between two
game instances running on different devices, confirmation mes-
sages are sent through the input and output opened streams, in
order to know the moment the game can start. Afterwards, a
NXAirHockeyRemote descendant class object is instantiated, a
NXAirHockeyRemoteServer instance in the case of a game
server instance or aNXAirHockeyRemoteClient in the case
of a client game instance.

The NXController class is capable to present OpenGL based
views as well as views composed by UIKit components (NIB files)
into the iPhone’s screen. Thus, menus and screens similar to a con-
nection screen were generated in the Interface Builder, hence being
easily and quickly developed and edited. This approach is particu-
larly desirable because UIKit components are more functional for
user interface such as menus and configurations screens than Open
GL. The figure 7 presents theNXController showing the two
different screen types. View transitions are smoothed through Core
Animation (QuartzCore framework) features.

NXStreamEvent
Handler

NXNetworkClient
Controller

NXNetworkServer
Controller

GameConnnection

Game

NXControllerNXView

Figure 6: NXAirHockey’s game module

The figure 6’s diagram shows theGameConnection
class being presented into iPhone’s screen by the
NXController (figure 7) and also presents the class
managing connection between different game instances,
through the protocols NXNetworkServerController ,
NXNetworkClientController and
NXStreamEventHandler . In addition, the class is responsible
for publishing or resolving a Bonjour service, respectively, when
running in server or client mode.

6 Conclusions

This paper discussed the development of the NX 2D Gaming
Framework, which brings an alternative option for the development
of smaller scale game projects. Comparing to the development

xxxxxxxxxxxxxx

(a) (b)

Figure 7: (a) Game connection screen (loaded from a NIB file); (b)
NXAirHockey game screen (rendered into an OpenGL canvas)

based purely in iPhone’s SDK APIs, our framework offers some ad-
vantages such as a network communication abstracion layer based
on Zeroconf standard, integration with user interfaces constructed
with Apple’s Interface Builder and integration with Open GL ES.
The use of NIB files (from Interface Builder) for non gameplay
classes leads to a faster development of menu and others views.
This advantage was not found in the related works. Future improve-
ments include game interface support based on iPhone’s accelerom-
eters and support for audio and music, which is currently made by
third party libraries.

Acknowledgements

The authors would like to thank University of Blumenau (FURB)
and Project Acredito for the finantial support for equipment aquisi-
tion.

References

ALLEN , C., AND APPELCLINE, S. 2008. iPhone in Action: In-
troduction to Web and SDK Development. Manning Publications
Co., Greenwich, CT, USA.

APPLE COMPUTER, 2009a. iPhone OS technologies.http://
developer.apple.com , May.

APPLE COMPUTER, 2009b. Bonjour overview. http://
developer.apple.com , April.

COCOS2D, 2009. cocos2d for iphone. http://www.
cocos2d-iphone.org/ , June.

COELHO, E., PIVA , G. R., AND GOMES, P. C. R.,
2009. ZigZigZaa - Apple App Store. http:
//itunes.apple.com/WebObjects/MZStore.
woa/wa/viewSoftware?id=30650%2103&mt=8 , Mar.

DALRYMPLE , M., AND KNASTER, S. 2008.Learn ObjectiveC on
the Mac. Apress, Berkely, CA, USA.

ENGEL, W., 2009. Oolong engine.http://oolongengine.
com/ , June.

GARAGEGAMES, 2009. iTGB.http://www.garagegames.
com/products/torque-2d/iphone , June.

SIO2, 2009. Home. http://sio2interactive.com/ ,
June.

STONETRIP, 2009. Stonetrip: Development is a game.http:
//www.stonetrip.com/ , June.

UNITY TECHNOLOGIES, 2009. Unity: Game development tool.
http://unity3d.com/unity/ , June.

VOIP-INFO, 2009. Asterisk zeroconf support - voip-
info.org. http://www.voip-info.org/wiki/view/
Asterisk+Zeroconf+Support , June.


